Меню

Использование осциллографа. Электронный осциллограф Где применяется электронный осциллограф

Сантехника

Если спросить профессионального регулировщика электронной аппаратуры или радиоинженера: "Какой самый главный прибор на вашем рабочем месте?" Ответ будет однозначным: "Конечно, осциллограф!". И это действительно так.

Конечно, невозможно обойтись без мультиметра . Измерить напряжение в контрольных точках схемы, замерить сопротивление и ток, «прозвонить» диод или проверить транзистор все это важно и нужно.

Но когда речь заходит о регулировке и настройке любого электронного устройства от простого телевизора до многоканального передатчика орбитальной станции, то без осциллографа обойтись невозможно.

Осциллограф предназначен для визуального наблюдения и контроля периодических сигналов любой формы: синусоидальной, прямоугольной и треугольной. Благодаря широкому диапазону развёртки он позволяет так развернуть импульс, что можно контролировать даже наносекундные интервалы. Например, измерить время нарастания импульса, а в цифровой аппаратуре это очень важный параметр.

Осциллограф – это своего рода телевизор, который показывает электрические сигналы.

Как работает осциллограф?

Чтобы понять, как работает осциллограф, рассмотрим блок-схему усреднённого прибора. Практически все осциллографы устроены именно так.

На схеме не показаны только два блока питания : высоковольтный источник, который используется для вырабатывания высокого напряжения поступающего на ЭЛТ (электронно-лучевая трубка ) и низковольтный, обеспечивающий работу всех узлов прибора. И отсутствует встроенный калибратор , который служит для настройки осциллографа и подготовки его к работе.

Исследуемый сигнал подаётся на вход "Y " канала вертикального отклонения и попадает на аттенюатор, который представляет собой многопозиционный переключатель, регулирующий чувствительность. Его шкала отградуирована в V/см или V/дел. Имеется в виду одно деление координатной сетки нанесённой на экран ЭЛТ. Там же нанесены сами величины: 0,1 В,10 В, 100 В. Если амплитуда исследуемого сигнала неизвестна, мы устанавливаем минимальную чувствительность, например 100 вольт на деление. Тогда даже сигнал амплитудой 300 вольт не выведет прибор из строя.

В комплект любого осциллографа входят делители 1: 10 и 1: 100 они представляют собой цилиндрические или прямоугольные насадки с разъёмами с двух сторон. Выполняют те же функции, что и аттенюатор. Кроме того при работе с короткими импульсами они компенсируют ёмкость коаксиального кабеля. Вот так выглядит внешний делитель от осциллографа С1-94. Как видим, коэффициент деления его составляет 1: 10.

Благодаря внешнему делителю удаётся расширить возможности прибора, так как при его использовании становится возможным исследование электрических сигналов с амплитудой в сотни вольт.

С выхода входного делителя сигнал поступает на предварительный усилитель . Здесь он разветвляется и поступает на линию задержки и на переключатель синхронизации. Линия задержки предназначена для компенсации времени срабатывания генератора развёртки с поступлением исследуемого сигнала на усилитель вертикального отклонения. Оконечный усилитель формирует напряжение, подаваемое на пластины "Y " и обеспечивает отклонение луча по вертикали.

Генератор развёртки формирует пилообразное напряжение, которое подаётся на усилитель горизонтального отклонения и на пластины "X " ЭЛТ и обеспечивает горизонтальное отклонение луча. Он имеет переключатель, градуированный как время на деление ("Время/дел"), и шкалу времени развёртки в секундах (s), миллисекундах (ms) и микросекундах (μs).

Устройство синхронизации обеспечивает начало запуска генератора развёртки одновременно с возникновением сигнала в начальной точке экрана. В результате на экране осциллографа мы видим изображение импульса развёрнутое во времени . Переключатель синхронизации имеет следующие положения:

    Синхронизация от исследуемого сигнала.

    Синхронизация от сети.

    Синхронизация от внешнего источника.

Первый вариант наиболее удобный и он используется чаще всего.

Осциллограф С1-94.

Кроме сложных и дорогих моделей осциллографов, которые используются при разработке электронной аппаратуры, нашей промышленностью был налажен выпуск малогабаритного осциллографа C1-94 специально для радиолюбителей. Несмотря на невысокую стоимость, он хорошо зарекомендовал себя в работе и обладает всеми функциями дорогого и серьёзного прибора.

В отличие от своих более "навороченных" собратьев, осциллограф С1-94 обладает достаточно небольшими размерами, а также прост в использовании. Рассмотрим его органы управления. Вот лицевая панель осциллографа С1-94.

Справа от экрана сверху вниз.

    Ручка: «Фокус».

    Ручка «Яркость».

    Этими регуляторами можно настроить фокусировку луча на экране, а также его яркость. В целях продления срока службы ЭЛТ желательно выставлять яркость на минимум, но так, чтобы показания были видны достаточно чётко.

  • Сеть ». Кнопка включения прибора.

  • Кнопка режима «Ждущ-Авт ».

    Это кнопка выбора ждущего и автоматического режима развёртки. При работе в ждущем режиме запуск и синхронизация развёртки производится исследуемым сигналом. При автоматическом режиме запуск развёртки происходит без сигнала. Для исследования сигнала чаще используется ждущий режим запуска развёртки.

    Вот этой кнопкой производится выбор полярности запускающего импульса. Можно выбрать запуск от импульса положительной или отрицательной полярности.

    Кнопка установки синхронизации «Внутр-Внешн ».

    Обычно используется внутренняя синхронизация, так как для использования внешнего синхросигнала нужен отдельный источник этого внешнего сигнала. Понятно, что в условиях домашней мастерской это в подавляющем случае не нужно. Вход внешнего синхросигнала на лицевой панели осциллографа выглядит вот так.

    Кнопка выбора "Открытого" и "Закрытого" входа.

    Тут всё понятно. Если предполагается исследование сигнала с постоянной составляющей, то выбираем "Переменный и постоянный". Этот режим называется "Открытым", так как на канал вертикального отклонения подаётся сигнал, содержащий в своём спектре постоянную составляющую или низкие частоты.

    При этом, стоит учитывать, что при отображении сигнала на экране он уйдёт вверх, так как к амплитуде переменной составляющей добавиться и уровень постоянной составляющей. В большинстве случаев лучше выбирать "закрытый" вход (~ ). При этом постоянная составляющая электрического сигнала будет отсечена и не отображается на экране.

    Клемма «корпус» служит для заземления корпуса прибора. Это делается в целях безопасности. В условиях домашней мастерской порой нет возможности заземлить корпус прибора. Поэтому приходится работать без заземления. При этом важно помнить, что во включенном состоянии на корпусе осциллографа может быть потенциал напряжения. При касании корпуса может "дёрнуть". Особенно опасно дотрагиваться одной рукой до корпуса осциллографа, а другой рукой до батарей отопления или других работающих электроприборов. В таком случае опасный потенциал с корпуса пройдёт через ваше тело ("рука" - "рука") и вы получите электрический удар! Поэтому при работе осциллографа без заземления желательно не дотрагиваться до металлических частей корпуса. Это правило справедливо и для прочих электроприборов с металлическим корпусом.

    По центру лицевой панели переключатель «развёртка» - Время/дел . Именно этот переключатель управляет работой генератора развёртки.

    Чуть ниже располагается переключатель входного делителя (аттенюатора) - V/дел . Как уже говорилось, при исследовании сигнала с неизвестной амплитудой, необходимо выставить максимально возможное значение V/дел. Так для осциллографа С1-94 нужно установить переключатель в положение 5 (5V/дел. ). В таком случае одна клетка на координатной сетке экрана будет равна 5-ти вольтам. Если ко входу "Y" осциллографа подключить делитель с коэффициентом деления 1 к 10 (1: 10), то одна клетка будет равна 50-ти вольтам (5V/дел. * 10 = 50V/дел.).

Также на панели осциллографа имеются:

В настоящее время, с развитием цифровой техники, стали широко внедряться цифровые осциллографы. По сути это гибрид аналоговой и цифровой техники. Отношение к ним неоднозначное, как к мясорубке с процессором или к кофемолке с дисплеем.

Аналоговая аппаратура всегда была надежной и удобной в работе. Кроме того она легко ремонтировалась. Цифровой осциллограф стоит на порядок дороже и очень сложен в ремонте. Плюсов конечно много. Если аналоговый сигнал с помощью АЦП (аналогово-цифрового преобразователя) перевести в цифровую форму, то с ним можно делать всё что угодно. Его можно записать в память и в любой момент вывести на экран для сравнения с другим сигналом, складывать в фазе и противофазе с другими сигналами. Конечно, аналоговая техника это хорошо, но за цифровой электроникой будущее.

В электронных осциллографах можно на экране наблюдать кривые различных электрических и импульсных процессов, изменяющихся с частотой от нескольких герц до десятков мегагерц.

С помощью электронных осциллографов можно выполнять измерения различных электрических величин, получать семейство характеристик полупроводниковых приборов, определять параметры электронных устройств, а также проводить многие другие исследования.

Электронные осциллографы присоединяют к сети переменного напряжения 127 или 220 В, частотой 50 Гц, а некоторые из них, кроме того, могут получать питание от источника переменного напряжения 115 или 220 В, частотой 400 Гц либо от источника постоянного напряжения 24 В, включаемых нажатием кнопки «СЕТЬ» (рис. 1).

Рис. 1. Передняя панель электронного осциллографа С1-72

Поворотом двух соответствующих ручек, расположенных в нижней левой части передней панели прибора, можно регулированием яркости и фокусировки получить на экране светящееся пятно малых размеров с резко очерченным контуром, которое нельзя долгое время оставлять неподвижным во избежание порчи экрана электронно-лучевой трубки.

Это пятно легко сместить в любое место экрана поворотом ручек, возле которых нанесены двусторонние стрелки. Однако лучше до присоединения осциллографа к источнику питания органы его управления расположить так, чтобы на экране вместо точки сразу получить светящуюся горизонтальную линию развертки, яркость, фокусировку и расположение которой на экране отрегулировать в соответствии с требованиями эксперимента поворотом соответствующих ручек.

Исследуемое напряжение u (t ) подают соединительным кабелем к гнезду «ВХОД Y », что обеспечивает поступление его па входной делитель напряжения, управляемый ручкой «УСИЛИТЕЛЬ Y », а затем к усилителю вертикального отклонения луча. Если до этого на экране светилась неподвижная точка, то теперь на нем появится вертикальная полоса, длина которой прямо пропорциональна амплитуде исследуемого напряжения.

Включение встроенного в осциллограф генератора пилообразного напряжения, присоединенного к электронно-лучевой трубке через усилитель горизонтального отклонения луча с коэффициентом усиления, регулируемым поворотом ручки переключателя, расположенного в верхнем нравом углу передней панели прибора, изменяет длительность развертки и обеспечивает появление на экране изображения кривой u (t ).

В том случае, если до включения осциллографа органы его управления были установлены в положения, обеспечивающие появление горизонтальной линии развертки, подача исследуемого напряжения на «ВХОД Y » сопровождается появлением на экране той же кривой и u (t ). Неподвижность кривой исследуемого напряжения достигается нажатием одной из кнопок блока синхронизации и соответствующим поворотом ручек «СТАБИЛЬНОСТЬ» и «УРОВЕНЬ». Прозрачная шкала, прикрывающая экран электронно-лучевой трубки, облегчает необходимые измерения по вертикали и горизонтали.


Большинство электронных осциллографов позволяет одновременно подавать два исследуемых напряжения соответственно на входы Y и X, если предварительно нажать кнопку «ВХОД X».

При двух синусоидальных напряжениях одинаковых частот и амплитуд, сдвинутых по фазе относительно друг друга на а, на экране появляются фигуры Лиссажу (рис. 2 ), форма которых зависит от сдвига фаз α = arcsin B/A ,

где В - ордината точки пересечения фигуры Лиссажу с вертикальной осью; А - ордината верхней точки фигуры Лиссажу.

Рис. 2. Фигуры Лиссажу при двух синусоидальных напряжениях одинаковых частот и равных амплитуд, сдвинутых по фазе на α .

Наличие одного луча в электроннолучевой трубке является существенным недостатком осциллографа, исключающим одновременное наблюдение нескольких процессов на экране, что устранимо применением электронного коммутатора.

В двухканальных электронных коммутаторах имеются два входа с одним общим зажимом и один выход, присоединяемый К входу У электронного осциллографа. При работе коммутатора его входы поочередно автоматически подключаются к входу У, в результате чего на экране осциллографа одновременно наблюдают обе кривые напряжений, подведенных ко входам коммутатора. В зависимости от частоты переключения входов изображение кривых на экране получается в виде пунктирных или сплошных линий. Для получения желаемых масштабов кривых на входах коммутаторов установлены делители напряжения.

В четырехканальных электронных коммутаторах имеются четыре двухзажимных входа с делителями напряжения и один выход, подключаемый к входу Y электронного осциллографа, что позволяет одновременно видеть па экране четыре кривые. Обычно электронные коммутаторы имеют ручки для смещения кривых на экране осциллографа вверх и вниз, что позволяет располагать их в соответствии с требованиями эксперимента.

Одновременное наблюдение нескольких кривых возможно также в многолучевых осциллографах, у которых электронно-лучевая трубка имеет несколько систем электродов, создающих лучи и управляющих ими.

Электронные осциллографы позволяют не только наблюдать на экране различные установившиеся периодические процессы, но и фотографировать осциллограммы различных быстропротекающих процессов.

В настоящее время на смену аналоговым осциллографам приходят цифровые запоминающие осциллографы , которые обладают более серьезными функциональными и метрологическими возможностями.

Цифровые запоминающие осциллографы подключаются к персональному компьютеру или ноутбуку через параллельный порт LPT или USB -порт и используют возможности компьютера для отображения электрических сигналов. У большинства моделей дополнительного питания не требуется.

Все стандартные функции осциллографа реализуются с помощью специальных программ, запускающихся на компьютере, т.е. дисплей компьютера используется как экран осциллографа. Такие осциллографы отличаются очень высокой чувствительностью и полосой пропускания.

Рис. 3. Запоминающий цифровой осциллограф ZET 302

Рис. 4. Программа для работы с цифровым осциллографом

Запоминающие цифровой осциллограф фактически является специальной приставкой компьютеру, занимает намного меньше рабочего пространства по сравнению с аналоговыми моделями, так как функции обработки сигналов и их отображения переложены на обычный компьютер. Производительность цифрового запоминающего осциллографа ограничена только производительностью компьютера.

Общее управление последовательностью работы узлов цифрового осциллографа осуществляется микропроцессором. Функциональная схема цифрового осциллографа содержит ряд узлов характерных для компьютера. Это, прежде всего, микропроцессор, цифровые схемы управления и память.

Программное обеспечение цифрового осциллографа может выполнять множество функций, не свойственных светолучевому осциллографу, например, усреднение сигнала с целью его очистки от шумов, быстрое преобразование Фурье для получения спектрограмм сигнала и т. д.

Осциллограф входит в комплект необходимых измерительных приборов при работе с электронными устройствами. Осциллограф – это единственный вид измерительных устройств, который позволяет наблюдать форму сигнала непосредственно, а также оценивать его амплитудные и временные характеристики. Современные осциллографы по точности измерения параметров не уступают специализированным измерительным приборам – вольтметрам, частотомерам.

Назначение осциллографа – это наблюдение формы сигнала, измерение его мгновенных параметров в любой момент времени наблюдения, сравнение формы и фазовых сдвигов с другими колебаниями.

Устройство и принцип действия

Устройство электронного осциллографа можно без преувеличения назвать одним из самых сложных среди большинства измерительных приборов. По принципу работы он практически идентичен телевизионному приемнику, с той разницей, что вместо сигнала изображения на его вход подается исследуемый сигнал.

В основе устройства лежит электронно-лучевая трубка, на которой визуально отображается состояние входного электрического сигнала. Для того чтобы согласовывать изображение на экране с реальной формой колебаний, электронный луч осциллографа управляется генератором строчной развертки.

Электронно-лучевая трубка осциллографа имеет в составе две пары отклоняющих пластин, которые управляют положением электронного луча на экране. Первая пара расположена горизонтально и отвечает за отклонение луча по горизонтали. Для этого на нее подается напряжение пилообразной формы от генератора горизонтальной развертки. Постепенно увеличивающееся напряжение вызывает линейное отклонение луча по горизонтали. Во время резкого спада импульса развертки луч возвращается назад для того, чтобы начать движение заново. Момент возврата луча не должен быть виден на экране, поэтому в это время на экран подается напряжение гашения луча.

Наиболее полно уяснить работу осциллографа можно, рассмотрев блок-схему внутреннего устройства.

Схема осциллографа позволяет более детально понять принцип его работы. По ней видно, что в состав прибора входит два канала: вертикального и горизонтального отклонения.

Горизонтальная развертка

Канал горизонтального отклонения (называется канал X) подключен к генератору развертки, который вырабатывает сигнал горизонтального отклонения лучей ЭЛТ. Генератор развертки может работать в нескольких режимах:

  • Внутренняя синхронизация. Работает в режиме автоколебаний с вручную выставленной частотой;
  • Внешняя синхронизация. Запуск генератора происходит от входных импульсов. Включает три подрежима: запуск по фронту или по спаду импульсов и от внешнего источника колебаний;
  • Синхронизация от питающей сети (50Гц);
  • Ручной (однократный) запуск.

Режим внутренней синхронизации удобен при исследованиях сигналов стабильной частоты, поскольку только при таком условии наблюдается стабильное неподвижное изображение. Для увеличения стабильности в данном режиме может быть организован захват частоты на входе собственным генератором развертки.

В режиме внешней синхронизации, его еще называют ждущий режим, запуск генератора производится в момент достижения входным сигналом определенного уровня или от внешнего источника. Данный режим удобен для исследования недостаточно стабильных колебаний, особенно, когда используется синхронизация генератора развертки и исследуемой схемы от одного источника колебаний. Для точной установки уровня, с которого начинается запуск генератора, в приборе предусмотрена регулировка.

Зачем предусмотрена синхронизация от сети? При синхронизации от питающей сети запуск развертки происходит синхронно с колебаниями сетевого напряжения, что очень удобно при наблюдении помех и искажений, вносимых устройствами питания.

К сведению. Ручная синхронизация используется при исследовании непериодических сигналов, например, в логических схемах.

Вертикальная развертка

По аналогии с координатной сеткой канал вертикального отклонения именуется канал Y. В нем происходит обработка входного исследуемого сигнала, который подается в канал через аттенюатор – ступенчатый регулятор уровня. Так сделано для того, чтобы амплитуда измеряемого параметра не превышала допустимого уровня, и наблюдаемая картинка не выходила за границы экрана. Канал вертикального отклонения имеет возможность передачи сигнала на задающий генератор горизонтального отклонения для синхронизации последнего.

Обычный режим работы канала Y – открытый. Это означает, что вертикальное отклонение луча будет в точности соответствовать уровню сигнала. Когда имеется постоянная составляющая, она может мешать наблюдению колебаний, поскольку картинка на экране будет сильно смещена к верхней или нижней границе экрана или даже выходить за нее. Либо же придется подгонять аттенюаторов в размер экрана. Постоянную составляющую можно убрать, переключив канал в режим закрытого входа.

Что такое закрытый вход? В таком случае сигнал поступает через конденсатор, который не создает препятствий для переменного напряжения.

Оба канала имеют оконечные усилители, которые формируют необходимые уровни сигналов, подаваемых на отклоняющие пластины.

Основные параметры

Как и любой другой измерительный прибор, электронный осциллограф имеет характеристики, которые определяют возможную область применения:

  • Для того чтобы вход устройства не вносил искажения в исследуемую схему, его сопротивление должно быть достаточно велико. Подавляющее большинство осциллографов имеет сопротивление входа 1 Мом;
  • Второй важный параметр – верхняя граничная частота исследуемого сигнала. Современные осциллографы способны работать с колебаниями гигагерцовой частоты. Здесь имеется в виду не только частота сигнала, но и длительность фронта или спада отдельных импульсов, то есть время изменения амплитуды. Это важно при исследовании сигналов несинусоидальной формы. Чем ближе форма сигнала к прямоугольной, тем больше в нем присутствие высокочастотных гармонических составляющих. Если входные цепи не рассчитаны на такую частоту, то на изображении передняя и задняя стенки импульсов будут передаваться с искажениями. Частота будет отображаться верно, но форма импульса уже не будет соответствовать реальной;

Важно! При исследованиях прямоугольных колебаний верхняя допустимая частота электронно лучевого осциллографа должна в несколько раз превосходить частоту сигнала.

  • Диапазон допустимых значений уровня. Разумеется, что колебания малого уровня не будут способны вызвать отклонения электронного пучка ЭЛТ или выйдут из допустимых пределов разрешающей способности аналого-цифрового преобразователя частоты. Высокие значения мало того что вызовут искажения изображения, но могут и вывести из строя входные цепи устройства.

Области применения

Как уже понятно из предыдущих описаний, осциллографы служат для исследований формы периодических и дискретных сигналов. В некоторых случаях измерений без них обойтись практически невозможно. Вольтметр и амперметр дают только понятие об уровнях сигнала, частотомер – об их частоте, но полной картины без использования осциллографа достигнуть невозможно.

Одна из значительных областей применения – исследование формы телевизионного сигнала, где, кроме сигнала, несущего информацию о передаваемом изображении, присутствуют данные о сигналах синхронизации кадровой и строчной разверток, импульсах цветовой синхронизации и прочей дополнительной информации. Наблюдения осциллографических изображений телевизионного сигнала позволяют значительно облегчить ремонт и регулировку трактов изображения телевизионных приемников.

Типы осциллографов

По принципу построения внутренней схемотехники электронно лучевые осциллографы делятся на:

  • Аналоговые;
  • Цифровые;
  • Аналоговые с цифровой обработкой сигнала.

Исторически первыми появились аналоговые устройства, так как требовали наличия обычных аналоговых компонентов для работы внутренних составляющих. При этом они обеспечивали достаточно точное отображение формы сигнала, но не имели возможности производить замеры амплитудных и частотных характеристик. Движение электронного луча вкупе с искажениями, вносимыми входным трактом, давали большую нелинейность при определении амплитуды и частоты сигнала. Таким образом, по этим параметрам можно было производить только оценочные измерения.

Наблюдения были возможны только для периодических сигналов.

Появление специальных электронно-лучевых трубок позволило организовать память на одно движение луча горизонтальной развертки. Это было необходимо для оценки однократных сигналов или импульсных помех.

Более широкие возможности имеют устройства с цифровым трактом обработки сигнала, который после входных цепей осциллографа подавался на аналого-цифровой преобразователь. Данный алгоритм позволил производить точные измерения параметров, в том числе напряжение и частоту следования, длительность импульсов. Используя запоминающее устройство, легко можно было организовать запоминание любых участков формы сигнала без применения специальных трубок.

Цифроаналоговые осциллографы бывают двух подвидов. В первых из них цифровой тракт использовался только как дополнение к аналоговому для измерения параметров, во вторых – использовался для формирования изображения на ЭЛТ. Первый тип устройств по своим параметрам ничем не отличался от классических аналоговых, имея дополнительную опцию по измерению параметров. Второй подвид вплотную приблизился к полностью цифровым приборам, отличаясь только устройством отображения информации.

Цифровые осциллографы используют для отображения информации жидкокристаллический дисплей, на котором, кроме формы сигнала, отображаются все измеряемые параметры:

  • Напряжение: амплитудное, среднее;
  • Частота сигнала;
  • Длительность импульсов;
  • Длительность фронта и спада импульсов;
  • Фазовые сдвиги.

Таким образом, один прибор способен заменить собой большую часть измерительных приборов.

Первые цифровые осциллографы характеризовались малой разрешающей способностью экрана и в этом качестве сильно уступали аналоговым устройствам, рисуя на дисплее сильно искаженную картинку сигнала. В настоящее время это ограничение снято, и качество изображения не уступает электронно-лучевой трубке.

Важно! Среди полезных качеств цифровых осциллографов следует отметить широкие возможности по запоминанию изображения и параметров измеряемых сигналов на различных участках времени, хранение информации и вывод ее на печать или передачу на внешние носители.

Методика измерений

Перед началом работы производится калибровка прибора. Для этой цели предусмотрены выходы встроенного калибратора со строго фиксированными значениями частоты и напряжения. Регулировкой чувствительности и частоты устанавливают изображение на экране в соответствии с нормой.

Для измерений следует иметь в виду, что щупы осциллографа имеют два вывода, один из которых подключается к общей точке электросхемы – массе.

Предварительно на входном аттенюаторе выставляется уровень, соответствующий напряжению измеряемого сигнала. Если это значение неизвестно, то следует начинать с максимального положения. Обычно это 100 В на одно деление экрана. Переключая положение аттенюатора, добиваются того, чтобы картинка занимала большую часть экрана.

Далее выставляют требуемый режим синхронизации и частоту развертки задающего генератора. На регуляторе частоты установлены значения длительности периода колебаний. То есть, если переключатель установлен в положение 20 мс/дел, это означает, что период колебаний длительностью 20 мс будет укладываться в одно деление координатной сетки. Это соответствует частоте 50 Гц.

Регулятором уровня и синхронизации добиваются неподвижности изображения.

Для измерений используется следующая методика:

  1. Уровень сигнала определяют, подсчитывая, сколько делений по вертикали занимает изображение. Полученное число умножают на значение аттенюатора;
  2. Также определяют и длительность сигнала, с тем отличием, что отсчитывают деления по горизонтали и умножают число на значение регулятора длительности. Частоту определяют по формуле:

Дополнительные возможности

Существуют многоканальные осциллографы, у которых имеется несколько входов Y и, соответственно, можно наблюдать сразу несколько сигналов. Для чего нужен многоканальный осциллограф? Он незаменим для определения фазовых сдвигов колебаний относительно друг друга и их сравнения.

Для увеличения входного диапазона применяются входные делители 1:10 или 1:100, которые поднимают допустимое верхнее значение сигнала в 10 и 100 раз, соответственно. Этот факт нужно учитывать при измерениях в дальнейшем. Наличие входного делителя при этом пропорционально увеличивает и входное сопротивление прибора.

Цифровые осциллографы избавляют от необходимости ручного подсчета амплитуды и частоты, выводя эти значения на экран. Кроме того, они позволяют заносить изображение в память и передавать его на внешнее печатающее устройство.

При отсутствии дополнительных входов Y для определения фазовых сдвигов нужен осциллограф, у которого предусмотрен вход Х с отключенным внутренним генератором развертки. Подавая колебания на входы X и Y, можно сравнивать фазы и частоты по так называемым фигурам Лиссажу.

Видео

▌Старая статья о аналоговом осциллографе
Рано или поздно любой начинающий электронщик, если не бросит свои эксперименты, то дорастет до схем, где нужно отслеживать не просто токи и напряжения, а работу схемы в динамике. Особенно это часто нужно в различных генераторах и импульсных устройствах. Вот тут без осциллографа делать нечего !

Страшный прибор, да? Куча ручек, каких то кнопочек, да еще экран и нифига не понятно что тут да зачем. Ничего, сейчас исправим. Сейчас я тебе расскажу как пользоваться осциллографом.

На самом деле тут все просто — осциллограф, грубо говоря, это всего лишь… вольтметр ! Только хитрый, способный показывать изменение формы замеряемого напряжения.

Как всегда, поясню на отвлеченном примере.
Представь, что ты стоишь перед железной дорогой, а мимо тебя с бешеной скоростью мчится бесконечный поезд состоящий из совершенно одинаковых вагонов. Если просто на них стоять и смотреть, то ничего кроме размытой фигни ты не увидишь.
А теперь ставим перед тобой стенку с окошком. И начинаем открывать окошко только тогда, когда очередной вагон будет в том же положении, что и предыдущий. Так как у нас вагоны все одинаковые, то тебе совершенно необязательно видеть один и тот же вагон. В результате картинки разных, но идентичных вагонов будут выскакивать перед твоими глазами в одном и том же положении, а значит картинка как бы остановится. Главное это синхронизировать открытие окошка со скоростью поезда, чтобы при открытии положение вагона не менялось. Если скорость не совпадет, то вагоны будут «двигаться» либо вперед, либо назад со скоростью, зависящую от степени рассинхронизации.

На этом же принципе построен стробоскоп — девайс, позволяющий разглядывать быстро движущиеся или вращающиеся хреновины. Там тоже шторка быстро-быстро открывается и закрывается.

Так вот, осциллограф это тот же стробоскоп, только электронный . А показывает он не вагоны, а периодические изменения напряжения. У той же синусоиды, например, каждый следующий период похож на предыдущий, так почему бы не «остановить» его, показывая в один момент времени один период.

Конструкция
Делается это посредством лучевой трубки, отклоняющей системы и генератора развертки.
В лучевой трубке пучок электронов попадая на экран заставляет светится люминофор, а пластины отклоняющей системы позволяют гонять этот пучок по всей поверхности экрана. Чем сильней напряжение, приложенное к электродам, тем больше отклоняется пучок. Подавая на пластины Х пилообразное напряжение мы создаем развертку . То есть луч у нас движется слева-направо, а потом резко возвращается обратно и продолжает снова. А на пластины Y мы подаем изучаемое напряжение.

Принцип работы
Дальше все просто, если начало появления периода пилы (луч в крайне левом положении) и начало периода сигнала совпадают, то за один проход развертки нарисуется один или несколько периодов измеряемого сигнала и картинка как бы остановится. Меняя скорость развертки можно добиться того, что на экране вообще останется только один период — то есть за один период пилы пройдет один период измеряемого сигнала.

Синхронизация
Синхронизировать пилу с сигналом можно либо вручную, подстраивая ручкой скорость так, чтобы синусоида остановилась, а можно по уровню . То есть мы указываем при каком уровне напряжения на входе нужно запустить генератор развертки. Как только напряжение на входе превысит уровень, так сразу же запустится генератор развертки и выдаст нам импульс.
В итоге, генератор развертки выдает пилу только тогда, когда надо. В этом случае синхронизация получается полностью автоматической. При выборе уровня следует учитывать такой фактор, как помехи. Так что если взять слишком низкий уровень, то мелкие иголки помех могут запустить генератор когда не нужно, а если взять уровень слишком большой, то сигнал может под ним пройти и ничего не случится. Но тут проще покрутить ручку самому и сразу же все станет понятно.
Также сигнал синхронизации можно подать и с внешнего источника.

В топку теорию, переходим к практике.
Показывать буду на примере своего осциллографа, спертого когда то давно с оборонного предприятия КБ «Ротор»:). Обычный осцил, не шибко навороченный, но надежный и простой как кувалда.


Итак:
Яркость, фокус и освещение шкалы думаю не требуют пояснений. Это настройки интерфейса.

Усилитель У и стрелочки вверх вниз. Эта ручка позволяет гонять изображение сигнала вверх или вниз. Добавляя ему дополнительное смещение. Зачем? Да иногда не хватает размера экрана, чтобы вместить весь сигнал. Приходится его загонять вниз, принимая за ноль не середину, а нижнюю границу.

Ниже идет тумблер переключающий ввод с прямого, на емкостный. Этот тумблер в том или ином виде есть на всех без исключения осциллографах.

Важная вещь! Позволяет подключать сигнал к усилителю либо напрямую, либо через конденсатор. Если подключить напрямую, то пройдет и постоянная составляющая и переменная . А через кондер проходит только переменная .

Например, надо нам посмотреть на уровень помех блока питания компа. Напряжение там 12 вольт, а величина помех может быть не более 0.3 вольт. На фоне 12 вольт эти жалкие 0.3 вольт будут совсем незаметны. Можно, конечно увеличивать коэффициент усиления по Y , но тогда график вылезет за экран, а смещения по Y не хватит, чтобы увидеть вершину. Тогда нам нужно лишь врубить конденсатор и тогда те 12 вольт постоянки осядут на нем, а в осциллограф пройдет только переменный сигнал, те самые 0.3 вольта помехи. Которые можно усилить и разглядеть в полный рост.

Далее идет коаксиальный разъем подключения щупа . Каждый щуп содержит в себе сигнал и землю . Землю обычно сажают на минус или на общий провод схемы, а сигнальным тычут по схеме. Осциллограф показывает напряжение на щупе относительно общего провода. Чтобы понять где сигнальный, а где земля достаточно взять за них рукой по очереди. Если возьмешься за общий, то на экране по прежнему будет пульс трупа. А если взяться за сигнальный, то увидишь кучу срача на экране — наводки на твое тело, служащее в данный момент антенной. На некторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения 1:10 или 1:100 , который позволяет воткнуть осциллограф хоть в розетку, без риска его спалить. Включается и выключается он тумблером на щупе.

Еще почти на каждом осциллографе есть калибровочный выход . На котором ты всегда можешь найти прямоугольный сигнал частотой 1Кгц и напряжением около полувольта . В зависимости от модели осцила. Используется для проверки работы самого осциллографа, ну иногда и в тестовых целях пригождается:)

Две здоровенные крутилки Усиление и Длительность

Усиление служит для масштабирования сигнала по оси Y . Там же показано сколько вольт на деление в итоге покажет.
Скажем, если у тебя стоит 2 вольта на деление, а сигнал на экране достигает высоты две клеточки размерной сетки, значит амплитуда сигнала равна 4 вольта.

Длительность определяет частоту развертки. Чем короче интервал, чем больше частота, тем более высокочастотный сигнал ты сможешь разглядеть. Тут клеточки проградуированы уже в милли и микросекундах. Так что по ширине сигнала ты можешь посчитать сколько он клеток, а умножив его на масштаб по оси Х получишь длительность сигнала в секундах. Также можно посчитать длительность одного периода, а зная длительность легко найти частоту сигнала f=1/t

Верхняя пипка на крутилках позволяет менять масштаб плавно. Обычно у меня она стоит на щелчке, чтобы я всегда четко знал какой у меня масштаб.

Также там есть вход Х на который можно подать свой сигнал, вместо пилы развертки. Таким образом осциллограф может послужить телевизором или монитором, если собрать схему которая будет формировать изображение.

Крутилка с надписью Развертка и стрелочками влево и вправо позволяет гонять график по экрану влево и вправо. Удобно иногда бывает, чтобы подогнать нужный участок под деления сетки.

Блок синхронизации.

Ручка уровня — задает уровень от которого будет стартовать генератор пилы.
Переключатель со внутренней на внешнюю , позволяет подать на вход синхроимпульсы с внешнего источника.
Переключатель с надписью +/- переключает полярность уровня. Есть не на всех осциллографах.
Ручка стабильность — позволяет вручную попытаться подобрать скорость синхронизации.

Быстрый старт.
Итак, включил ты осцил. Первое что нужно сделать это замкнуть сигнальный щуп на свой же земляной крокодил. При этом на экране должен появится «Пульс трупа». Если не появился, то покрути ручки стабилизации и смещений и уровня — возможно он просто спрятался за экран или не запустился из-за недостаточного уровня.

Как только появилась полоса, то выстави крутилками смещения её на ноль. Если у тебя аналоговый осцил, особенно если древний, то дай ему прогреться. У моего после включения ноль плавает еще минут пятнадцать.

Дальше выстави предел измерений по напряжению . Бери с запасом, если что уменьшишь. Теперь если земляной провод осциллографа приложишь к минусу батарейки, а сигнальный к плюсу, то увидишь как график скакнет на полтора вольта. Кстати, старые осциллографы зачастую начинают подвирать, поэтому по эталонному источнику напряжения полезно посмотреть насколько точно он отображает напряжение.

Выбор осциллографа.
Если ты только начал, то тебе подойдет любой . Крайне желательно если он будет двухканальным . То есть у него будет два щупа и две крутилки Усиления, для первого и второго канала, что позволяет одновременно получить два графика.
Вторым по важности критерием осциллографа является частота. Максимальная частота сигнала которую он может уловить. Мне пока хватало 1МГц на большее не замахивался. Те осциллографы, что продаются в магазинах уже имеют частоту от 10МГц и выше. Самый дешевый осциллограф который я видел стоил 5 тысяч рублей — . Двухканальный стоит уже 10 тысяч, ну а я нацелился взял себе за килобакс. Разные запросы — разные игрушки. Но, повторюсь, для начала хватит и 1МГц, и хватит надолго. Так что найди себе хоть какой нибудь осциллограф. А там поймешь что тебе надо.

Для любого профессионального настройщика электронных устройств или для инженера по радиоэлектронным устройствам основным рабочим устройством является осциллограф. Без него нельзя обойтись при настройке телевизора, передатчика. Осциллографы служат для контроля и наблюдения за периодическими сигналами различных форм, в том числе синусоидальной. Благодаря широкому интервалу развертки он дает возможность развернуть импульс даже для контроля наносекундных промежутков времени. Осциллограф подобен работе телевизора, который изображает электрические сигналы.

Устройство и принцип действия

Для лучшего понимания действия прибора, разберем блок-схему типового осциллографа, так как все их основные виды имеют аналогичное устройство.

На этой схеме не изображены блоки питания: низковольтный блок, подающий питание для работы узлов, и источник повышенного напряжения, применяющийся для генерирования высокого напряжения, приходящего на электронно-лучевую трубку. Также на схеме нет калибратора для настройки и подготовки прибора к работе.

Тестируемый сигнал поступает на канал вертикального отклонения «Y», далее на аттенюатор, выполненный в виде многопозиционного переключателя, настраивающего чувствительность осциллографа. Его шкала размечена в вольтах на сантиметр или в вольтах на одно деление. Это обозначает одно деление сетки координат на экране лучевой трубки. Там же изображены сами величины. Если амплитуда сигнала неизвестна, то устанавливается наименьшая чувствительность. В этом случае даже большой сигнал на 300 В не повредит прибору.

Обычно в комплекте с осциллографом есть делители , в виде специальных насадок с разъемами. Они работают так же, как аттенюатор. Эти насадки компенсируют емкость кабеля при работе с малыми импульсами. На фото показан делитель. Коэффициент деления равен 1:10.

С помощью делителя возможности прибора расширяются, можно исследовать сигналы в несколько сотен вольт. После делителя сигнал проходит на предварительный усилитель , раздваивается и приходит на переключатель синхронизации и линию задержки , которая служит для компенсации времени сработки генератора развертки. Оконечный усилитель создает напряжение, поступающее на «Y» -пластины, и отклоняет луч в вертикальной плоскости.

Генератор развертки создает пилообразное напряжение, поступающее на пластины «Х» и горизонтальный усилитель, при этом луч отклоняется в горизонтальной плоскости.

Устройство синхронизации создает условия для работы генератора развертки в одно время с появлением сигнала. В итоге на дисплей осциллографа выводится изображение импульса.

Переключатель синхронизации работает в положениях синхронизации от:
  • Исследуемого сигнала.
  • Сети.
  • Внешнего источника.

Первое положение применяется чаще, так как оно более удобно.

Классификация

Осциллографы являются распространенным видом измерительных приборов. Существует несколько видов осциллографов, имеющих разные характеристики, устройство и работу.

Аналоговые осциллографы

Такие осциллографы являются классическими моделями этого типа измерительных приборов. Любые аналоговые осциллографы имеют делитель, вертикальный усилитель, синхронизацию и отклонение, блок питания и лучевую трубку.

Такие трубки имеют больший диапазон частоты. Отклонение луча на экране прямо зависит от напряжения пластин. Горизонтальная развертка работает по линейной зависимости от напряжения горизонтальных пластин.

Нижний предел частоты равен 10 герцам. Верхняя граница определяется емкостью пластин и усилителем. Сегодня аналоговые устройства вытесняются цифровыми приборами со своими достоинствами. Но аналоговые приборы пока не исчезают ввиду их малой стоимости.

Цифровые запоминающие

Если цифровые приборы сравнивать с аналоговыми, у них больше возможностей. Стоимость их постепенно снижается. Цифровой осциллограф включает в себя делитель, усилитель, преобразователь аналогового сигнала, памяти, блока управления и выведения на ЖК панель.

Принцип действия такого вида осциллографов придает им большие возможности. Входящий аналоговый сигнал модифицируется в цифровую форму, и сохраняется. Скорость сохранения определяется управляющим устройством. Ее верхняя граница задается скоростью преобразователя, а нижняя граница не имеет ограничений.

Преобразование сигнала в цифровой код дает возможность увеличить устойчивость отображения, сохранять данные в память, сделать растяжку и масштаб проще. Применение дисплея вместо электронной трубки позволяет отображать любые данные и осуществлять управление прибором. Дорогостоящие приборы оснащаются цветным экраном, что позволяет различать сигналы других каналов, курсоры, выделять цветом разные места.

Параметры цифровых осциллографов намного выше аналоговых моделей, в больших пределах находится растяжка сигнала. Кроме простых схем включения синхронизации, может использоваться синхронизация при некоторых событиях или параметрах сигнала. Синхронизацию можно увидеть непосредственно перед включением развертки.

Применяемые процессоры обработки сигнала дают возможность обработки спектра сигнала с помощью анализа преобразованием Фурье. Информация в цифровом виде позволяет записать в память экран с итогами измерения, а также распечатать на принтере. Многие приборы оснащены накопителями для записи изображения в архив и последующей обработки.

Цифровые люминофорные

Такой тип осциллографов работает на новой структуре построения, основанной на цифровом люминофоре. Он имитирует по подобию с аналоговыми приборами изменение изображения на экране. Люминофорные цифровые типы осциллографов дают возможность наблюдать на дисплее все подробности модулированных сигналов, как и аналоговые типы. При этом обеспечивается их анализ и хранение в памяти.

Люминофорные приборы, как и предыдущая рассмотренная модель, имеет свою память для хранения различной информации, в том числе хранится разница задержки времени между разными пробниками. Возможность люминофорных осциллографов выводить данные с изменяемой интенсивностью значительным образом упрощает поиск повреждений в импульсных блоках. Это выражено при вычислении глубины модуляции сигнала при регулировке напряжения на выходе, приводящее к нестабильному функционированию блоков.

В люминофорных цифровых осциллографах объединены достоинства цифровых и аналоговых устройств, а во многом превосходят их. Люминофорные приборы обладают всеми преимуществами запоминающих осциллографов, обеспечивая возможности аналоговых приборов: быструю реакцию на смену сигнала и его отображение с разной яркостью.

Цифровые стробоскопические

В этом виде осциллографов применяется эффект последовательного стробирования сигнала. При повторении сигнала выбирается мгновенное значение в определенной точке. При поступлении нового сигнала точка выбора смещается по сигналу. Так продолжается до полного стробирования сигнала. Модифицированный таким образом сигнал в виде огибающей линии мгновенных величин сигнала входа, повторяет форму сигнала.

Продолжительность модифицированного сигнала на много больше продолжительности тестируемого сигнала, а значит, имеется сжатие спектра. Это соответствует увеличению полосы пропускания. Стробоскопические виды осциллографов имеют большие полосы пропускания, и дают возможность производить исследования периодических сигналов с наименьшей продолжительностью. Стоимость стробоскопических осциллографов очень высока, поэтому их применяют чаще всего для сложных задач.

Виртуальные осциллографы

Новый вид приборов может быть отдельным устройством с параллельным портом для вывода или ввода информации, а также с портом USB, а также встроенным вспомогательным прибором на базе карт ISA. Программная оболочка виртуальных осциллографов позволяет полностью управлять устройством, и имеет несколько возможностей сервиса: импорт и экспорт информации, цифровая фильтрация, разнообразные измерения, обработка информации математическим способом и т.д.

Осциллографы с применением персонального компьютера могут применяться для широких возможностей измерения. Например, для обслуживания и разработки радиотехнической и электронной аппаратуры, в телекоммуникационной связи, при изготовлении компьютеризированного оборудования, при выполнении диагностических мероприятий средств автотранспорта на станциях технического обслуживания и для многих других случаев, где требуется оценка и тестирование неустойчивых переходных процессов.

Виртуальные модели осциллографов являются хорошим альтернативным вариантом для стандартных запоминающих цифровых осциллографов, так как они обладают достоинствами в виде малой стоимости, простоте применения, компактных размеров и высокого быстродействия. К недостаткам виртуальных осциллографов относится невозможность измерения и отображения постоянной величины сигналов.

Портативные осциллографы

Цифровые технологии быстро развиваются, в результате чего цифровые стационарные приборы модифицируют в портативные устройства с хорошими параметрами габаритных размеров и массы, а также низким расходом электрической энергии.

При этом портативные осциллографы с питанием от не уступают по характеристикам стационарным приборам по количеству функций, имеют большие возможности использования в разных областях научных исследований, промышленном производстве.